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Abstract This paper studies the attitude control prob-
lem of spacecrafts with flexible appendages. It is well
known that the unwanted vibration modes, model un-
certainty and space environmental disturbances may
cause degradation of the performance of attitude con-
trol systems for a flexible spacecraft. In this paper, the
vibration from flexible appendages is modeled as a
derivative-bounded disturbance to the attitude control
system of the rigid hub. A disturbance-observer-based
control (DOBC) is formulated for feedforward com-
pensation of the elastic vibration. The model uncer-
tainty and space environmental disturbances as well
as other noises are merged into an “equivalent” dis-
turbance. We design a composite controller with a hi-
erarchical architecture by combining DOBC and PD
control, where DOBC is used to reject the vibration
effect from the flexible appendages. Numerical simu-
lations are performed to demonstrate that by using the
composite hierarchical control law, disturbances can
be effectively attenuated and the robust dynamic per-
formances be enhanced.
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1 Introduction

High precision attitude control for flexible spacecrafts
has been a difficult and important problem especially
in communication, navigation, remote sensing, and
other space-related missions. It is because modern
spacecrafts often employ large, deployed and light
damping structures (such as solar paddles and antenna
reflectors) to provide sufficient power supply and re-
duce launch costs. Consequently, the complex space
structure may lead to the decreased rigidity and low-
frequency elastic modes. The dynamic model of a
flexible spacecraft usually includes the interaction be-
tween the rigid and elastic modes [1, 2]. The unwanted
excitation of the flexible modes during the control of
the rigid body attitude, together with other external
disturbances, measurement and actuator error, and un-
modeled dynamics, may cause degradation of the per-
formance of attitude control systems (ACSs). Thus,
the control scheme must provide not only adequate
stiffness and damping to the rigid body modes, but
also actively damp or reject the flexible modes. The
desired control scheme should be robust enough to
overcome the model uncertainty and unmodeled non-
linearity, various disturbances from environment and
structural vibrations of the flexible appendages.
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Most present ACSs of spacecrafts are based on
PID (proportional-integration-derivative) or PD (pro-
portional-derivative) laws for its simplicity and relia-
bility. When the model uncertainties and coupling vi-
bration exist or external disturbance varies, it is dif-
ficult for PID/PD controller to get satisfactory per-
formances for flexible spacecrafts. From the 1990s,
instead of the conventional PID/PD control, optimal
control of flexible spacecraft has once been studied for
vibration suppression problems in [3, 4]. It is noted
that robustness cannot be guaranteed for optimal con-
trol in the presence of model uncertainties and non-
linearity. From then on, control schemes with robust-
ness have been designed for the attitude control and
vibration suppression problem. Sliding mode control
(SMC), known as an efficient and simple control strat-
egy to systems with strong nonlinearity and model
uncertainty is effectively applied to the ACS design
[5–7]. SMC is combined with active vibration con-
trol by piezoelectric actuator, but the chattering phe-
nomenon caused by SMC has limited its practical ap-
plications. In [8, 9], the influence of the flexibility on
the rigid motion, the presence of disturbances acting
on the structure, and parameter variations have been
considered in robust controller design. In [10, 11],
a series of variable structure control schemes have
been provided systematically for vibration suppression
problems. H∞ control has been used in ACS design
in [12, 13] where external disturbance and model un-
certainty are considered. An H∞ multi-objective con-
troller based on the Linear Matrix Inequality (LMI)
framework, is designed for flexible spacecraft in [14].
It is shown that H∞ controller may lead to large con-
servativeness for the active vibration control problem,
especially in case of the fast dynamic disturbance and
high-frequency perturbations.

As an efficient anti-disturbance control strategy,
DOBC has attracted considerable attention. DOBC
has also been considered as a robust control scheme
where the modeling error or the exogenous distur-
bance can be estimated and compensated through
feedforward (see e.g. [15, 16]). Many different effec-
tive schemes have been provided for robots, hard disks
and missiles (see e.g. [17, 18]). In [15], the DOBC ap-
proach in state space framework has been presented
for a class of nonlinear uncertain systems, where the
disturbance was generated by a linear exogenous sys-
tem. It has been shown that DOBC may have less
conservativeness for many types of disturbances and

is easy to integrate with other conventional feedback
controllers such as PD, H∞, and variable structure
controllers [15, 19].

In this paper, we will design a composite controller
based on DOBC and PD control schemes for flexible
spacecrafts, where DOBC can compensate the effect
of vibration from flexible appendages, and PD con-
troller can control the attitude of the spacecraft. Differ-
ent from [15, 19], the disturbance is not confined to be
a constant, a harmonic signal or a norm-bounded vari-
able. With the proposed method, some new compos-
ite anti-disturbance composite methods (by combining
DOBC with other feedback controllers) can be pro-
vided for ACS of spacecrafts. Simulations for a flexi-
ble spacecraft shows that the performance of ACS can
be guaranteed by the proposed method.

Notation Throughout this paper, for a vector s(t),
its Euclidean norm is defined by ‖s(t)‖2 = sT (t)s(t).
A real symmetric matrix P > (≥ 0) denotes P being
a positive definite (positive semi-definite) matrix. The
identity and zero matrix are denoted by I and 0, re-
spectively. Matrices, if not explicitly stated, are sup-
posed to have compatible dimensions. The symmet-
ric terms in a symmetric matrix are denoted by sym-
bol ∗. For a square matrix M , we denote sym(M) :=
M + MT .

2 Problem formulation

To simplify the problem, only single-axis rotation is
considered. We can obtain the single-axis model de-
rived from the nonlinear attitude dynamics of the flex-
ible spacecraft (see also [9, 10]). It is assumed that
this model includes one rigid body and one flexible ap-
pendage (see Fig. 1) and the relative elastic spacecraft
model is described as follows

J θ̈ + F η̈ = u + w, (1)

η̈ + 2ξωη̇ + ω2η + FT θ̈ = 0, (2)

where θ is the attitude angle, J is the moment of iner-
tia of the spacecraft, F is the rigid-elastic coupling ma-
trix, u is the control torque, w represents the merged
disturbance torque including the space environmen-
tal torques, unmodeled uncertainties and noises from
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Fig. 1 Spacecraft with flexible appendages

sensors and actuators, η is the flexible modal coordi-
nate, ξ is the damping ratio, and ω is the modal fre-
quency. Since vibration energy is concentrated in low-
frequency modes in a flexible structure, its reduced-
order model can be obtained by modal truncation. In
this paper, only the first two bending modes are taken
into account.

Combining (1) with (2), we can get
(
J − FFT

)
θ̈ = F

(
2ξωη̇ + ω2η

) + u + w. (3)

To (3), we consider F(2ξωη̇ + ω2η) as the dis-
turbance due to elastic vibration of the flexible ap-
pendages. Denote x(t) = [θ(t), θ̇ (t)]T , then (3) can be
transformed into the following form

ẋ(t) = Ax(t) + Buu(t) + Bf d0(t) + Bdd1(t), (4)

where the coefficient matrices are denoted by

A =
[

0 1
0 0

]
,

Bu = Bf = Bd =
[

0
(J − FFT )−1

]
,

d0(t) = F(2ξωη̇ + ω2η) is the disturbance from the
flexible appendages, d1(t) is the “equivalent dis-
turbance” including the space environmental distur-
bances, unmodeled uncertainties and noises from sen-
sors and actuators, and u(t) is the control input.

Obviously, the disturbance considered in this paper
generalizes the disturbance types studied in previous
works. In fact, we consider a new model with two dif-
ferent disturbance types d0(t) and d1(t). In this paper,
we suppose ‖ḋ0(t)‖ ≤ W0 and ‖d1(t)‖ ≤ W1, where
W0 and W1 are known positive constants.

The assumption that ‖ḋ0(t)‖ (upper bound of the
derivative of the disturbance) is bounded by a con-
stant is need to guarantee the stability. In the context

of anti-disturbance control, this assumption is not very
strong. In fact, d0(t) includes the neutral stable dis-
turbances or harmonic disturbances with known fre-
quency as studied in [20, 21]. Different from [15, 20,
21], in this paper the disturbance model is not required
so that the proposed controller can be used directly and
widely.

As the PD controller has been widely employed
in many practical systems, we consider the classical
PD controller described by uc(t) = KP θ(t)+KDθ̇(t).
Denote K = [KP ,KD], where K is the control gain to
be determined.

3 Composite controller design

3.1 Disturbance observer design

According to system (4), we formulate the disturbance
observer as
⎧
⎪⎨

⎪⎩

τ̇ (t) = −NBf

(
τ + Nx(t)

)

− N
(
Ax(t) + Buu(t)

)
,

d̂0 = τ + Nx(t),

(5)

where N is the gain of the observer to be designed.
The estimation error of disturbance observer is de-

fined as e(t) = d0(t) − d̂0(t). Then we have

ė(t) = ḋ0 − NBf e(t) − NBdd1(t). (6)

The first step of DOBC framework is to estimate the
disturbance via disturbance observer. According to the
practical situation of the flexible spacecraft, we should
design an appropriate N such that e(t) → 0. In the
DOBC scheme, the controller is constructed as

u(t) = −d̂0(t) + uc(t) = −d̂0(t) + Kx(t).

The DOBC scheme can be described by Fig. 2
(where d̂0(t) is the estimation of d0(t)). From Fig. 2,
it can be seen that the composite hierarchical con-
troller consists of two parts, the inner loop is the dis-
turbance observer and feedforward compensation, and
the outside loop is the PD attitude controller. Thus, the
composite controller can effectively control the space-
craft attitude and attenuate disturbances. The vibra-
tion caused by the flexible appendages is observed and
compensated, and the attitude of the spacecraft is con-
trolled by PD controller.
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Fig. 2 Block diagram of
composite attitude
controller

Substituting u(t) to (4) and (6), we can get the aug-
mented closed loop system as follows

[
ẋ(t)

ė(t)

]
=

[
A + BuK Bf

0 −NBf

][
x(t)

e(t)

]

+
[

0 Bd

1 −NBd

][
ḋ0(t)

d1(t)

]
. (7)

3.2 Stability of the composite systems

In this section, we will consider the uniformly ulti-
mately boundedness (UUB) of the augmented system
(7) (see e.g. [22]). We will give an LMI based de-
sign method to compute the controller gain and the
observer gain simultaneously.

Theorem 1 To augmented system (7), for α1 > 0,
β1 > 0 and β2 > 0, if there exists matrices Q1 > 0,
P2 > 0, R1, and Q2 satisfying

Θ =

⎡

⎢⎢
⎣

Θ11 Bf 0 0
∗ Θ22 Q2 P2

∗ ∗ −β−2
1 I 0

∗ ∗ ∗ −β−2
2 I

⎤

⎥⎥
⎦ < 0, (8)

where

Θ11 = sym(AQ1 + BuR1) + α2
1I,

Θ22 = − sym(Q2Bf ),

then composite system (7) is uniformly ultimately
bounded, the observer gain and the controller gain
can be computed via N = P −1

2 Q2 and K = R1Q
−1
1 .

Proof Denote

V (x, e, t) = [
xT eT

][
P1 0
0 P2

][
x

e

]

= xT P1x + eT P2e

= V1(x, t) + V2(e, t).

Computing the derivative of V1(x, t) along the trajec-
tories of (7), we can obtain

V̇1(x, t) = xT
(
sym(P1A + P1BuK)

)
x

+ 2xT P1Bf e + 2xT P1Bdd1

≤ xT
(
sym(P1A + P1BuK)

+ α2
1P1P

T
1

)
x + 1

α2
1

‖Bd‖2‖d1‖2

+ 2xT P1Bf e.

Similarly, we can compute the derivative of V2(e, t) in
the following

V̇2(e, t) = eT P2ė + ėT P2e

= sym
(
eT P2ḋ0 − eT P2NBf e

− eT P2NBdd1
)

= −eT sym(P2NBf )e + 2eT P2ḋ0

− 2eT P2NBdd1

≤ eT
(− sym(P2NBf ) + β2

1P2N(P2N)T

+ β2
2P2P

T
2

)
e

+ 1

β2
1

dT
1 BT

d Bdd1 + 1

β2
2

ḋT
0 ḋ0.
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Then, it can be verified that

V̇ (x, e, t) = V̇1(e, t) + V̇2(x, t)

≤ xT
(
sym(P1A + P1BuK) + α2

1P1P
T
1

)
x

+ eT
(− sym(P2NBf ) + β2

1P2N(P2N)T

+ β2
2P2P

T
2

)
e

+ 1

α2
1

‖Bd‖2W 2
1 + 2xT P1Bf e

+ 1

β2
1

‖Bd‖2W 2
1 + 1

β2
2

W 2
0

= [
xT eT

]
Γ

[
x

e

]
+ 1

β2
2

W0
2

+
(

1

α2
1

+ 1

β2
1

)
‖Bd‖2W 2

1

= [
xT eT

]
[
P1 0
0 I

]
Υ

[
P1 0
0 I

][
x

e

]

+ Cb,

where

Γ =
[

Γ11 P1Bf

BT
f P1 Γ22

]
,

Γ11 = sym(P1A + P1BuK) + α2
1P1P

T
1 ,

Γ22 = − sym(P2NBf ) + β2
1P2N(P2N)T + β2

2P2P
T
2 ,

Cb = 1

β2
2

W0
2 +

(
1

α2
1

+ 1

β2
1

)
‖Bd‖2W 2

1 ,

Υ =
[
P −1

1 0
0 I

]
Γ

[
P −1

1 0
0 I

]
=

[
Υ11 Bf

BT
f Υ22

]
,

Υ11 = sym
(
AP −1

1 + BuKP −1
1

) + α2
1I,

Υ22 = − sym(Q2Bf ) + β2
1Q2(Q2)

T + β2
2P2P

T
2 .

(9)

Denote Q1 = P −1
1 and R1 = KP −1

1 , then by us-
ing the well-known Schur complement formula, it is
shown that Θ < 0 ⇔ Υ < 0. Denote

Ξ =
[
P1 0
0 I

]
Υ

[
P1 0
0 I

]
,

then Θ < 0 ⇔ Ξ < 0 holds, which leads to the follow-
ing conclusion that there exists a positive scalar σ1 > 0

such that Ξ < −σ1I . So we can get

V̇ (x, e, t) < −σ1

∥∥∥∥

[
x

e

]∥∥∥∥

2

+ Cb,

where Cb is defined by (9). The conclusion can be ob-
tained. �

In Theorem 1, α1 > 0, β1 > 0 and β2 > 0 are neces-
sary parameters to get the controller gain and observer
gain. We can adjust the appropriate values to get the
desired attitude control performances.

4 Simulations

In this section, the effectiveness of the present algo-
rithm is demonstrated by numerical simulations. It will
be shown that the effect of the elastic vibration can be
estimated and compensated by DOBC, then enhanced
anti-disturbance attitude control performance can be
obtained. The composite controller will be applied for
the attitude control of a spacecraft with solar paddles.

In this paper we only consider the attitude in the
pitch channel. Four bending modes are considered for
the practical spacecraft model at ω1 = 3.17, ω2 =
7.38, ω3 = 16.954, and ω4 = 57.938 rad/s with damp-
ing ξ1 = 0.0001, ξ2 = 0.00015, ξ3 = 0.000173, and
ξ4 = 0.0001576, respectively. Because low-frequency
modes are generally dominant in a flexible system,
only the first two bending modes are used to repre-
sent the displacement of the flexible appendage in the
simulation of the system. We suppose F = [F1 F2],
where the coupling coefficients of the first two bending
modes are F1 = 1.2781 and F2 = 0.9176, respectively.
J = 35.72 kg m2 is the nominal principal moment of
inertia of pitch axis. In addition, in order to enhance
the robustness, ±20% perturbation of the nominal mo-
ment of inertial is also considered.

The flexible spacecraft is supposed to move in a cir-
cular orbit with the altitude of 500 km, then the orbit
rate n = 0.0011 rad/s. The space environmental dis-
turbance torques acted on the satellite are supposed as
follows
⎧
⎨

⎩

Tdx = 4.5 × 10−5(3 cosnt + 1),

Tdy = 4.5 × 10−5(3 cosnt + 1.5 sinnt),

Tdz = 4.5 × 10−5(3 sinnt + 1).

The initial pitch attitude of the spacecraft are

θ = 0.08 rad, θ̇ = 0.001 rad/s.
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Fig. 3 Time responses of vibration and vibration observed

Fig. 4 Vibration estimation error in disturbance observer

The intermediate design parameters in Theorem 1
are α1 = 1600, β1 = 1 and β2 = 1000, then we can get
the parameters of the PD controller

KP = 4.3515, KD = 17.2488,

and the observer gain

N = [0 1481.3] .

In this paper, F(2ξωη̇ + ω2η) is considered as the
vibration torque caused by the flexible appendages. It
can be easily verified that d1(t) and ḋ0 are bounded.
Figure 3 shows the time responses of elastic vibration,
vibration observed and estimation error. Figure 4 is ob-
tained by partial amplification of Fig. 3, and it shows

Fig. 5 Time responses of attitude angle

Fig. 6 Pointing precision under different controller

that the vibration from the flexible appendages can be
effectively estimated by disturbance observer, where
the estimation error is less than 5% of practical elastic
vibration. Thus, the effect of the elastic vibration to the
rigid hub is reduced to the lowest by feedforward com-
pensation. Figure 5 shows that the attitude angle of the
spacecraft has fine dynamic response performance un-
der the composite controller. To reveal the detail, the
time response in steady state in Fig. 5 is zoomed in
as shown in Fig. 6, where it shows that the attitude
control accuracy is improved by composite controller
compared with pure PD controller. At 50 s, the accu-
racy can be raised from about 0.0150 to 0.0020. Fig-
ure 7 shows that the attitude stabilization is improved
obviously under composite controller compared with
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Fig. 7 Time responses of attitude angular velocity

pure PD controller in the presence of flexible vibra-
tion.

5 Conclusion

In this paper, a new composite control scheme is de-
signed for attitude control of flexible spacecrafts in the
presence of model uncertainty, elastic vibration and
external disturbances. The composite controller com-
bined DOBC and PD control law, where DOBC can
reject the effect of the elastic vibration from the flexi-
ble appendages, and PD controller can effectively per-
form attitude control for the rigid hub in the presence
of multiple disturbances. Simulation results showed
that the composite controller can improve the point-
ing accuracy and stabilization capability of the flexible
spacecraft. This method provides a useful and promis-
ing way for the flexible spacecraft attitude control,
and more detailed work would be done in our future
work. Further research is required to consider more
general disturbance models and provide new compos-
ite control laws with enhanced anti-disturbance perfor-
mance.
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